

Climate-induced Change in Crop Yields:

A General Equilibrium Analysis of Macroeconomic Impacts and Costs & Benefits of Adaptation

Miles Perry, European Commission, Institute for Prospective Technological Studies

CIRCLE2 Conference, Lisboa 10 March, 2014

Presentation Overview

- Climate change impacts & CGE models
 - Multisector Analysis
- From impacts to adaptation: focus on agriculture
 - Moving into Adaptation
 - Preliminary Results
 - Caveats & Next Steps

Multisector Climate Change Impact Analysis

• IPTS has been involved in several climate impact projects as economic analyst

Multisectoral CGE enables joint analysis of different impacts

Source: Results of PESETA project

Advantages:

- Places a (speculative) monetary value on climate change damages
- Provides a common framework for comparing different effects e.g. how to compare yield loss, floods etc.?

Adaptation

IPTS continues to perform climate impact analysis

PESETA2 report coming soon feat. forest fires, tourism, human health, energy

BUT WHAT ABOUT ADAPTATION?

- By how much does adaptation reduce damages?
- How much does adaptation cost?
- & when is adaptation cost effective?

Modifying CGE Model for Adaptation

<u>Crop yield changes with & without adaptation</u> were produced by Universidad Politécnica de Madrid* as part of the PESETA project

without Adaptation:

farmers employ only costless adaptations to climate change (e.g. planting dates)

with Adaptation:

farmers adjust irrigation &/or fertiliser application as required by new climate

* Yield changes derived from 2080 climate scenario & DSSAT-based crop modelling See Iglesias A *et al.* (2011) Adapting Agriculture to Climate Change. *Economía Agraria y Recursos Naturales* 11 2

Crop Yields with/without Adaptation

Adaptation consists of Irrigation &/or Additional Fertiliser *Provided sustainability conditions allow*

Other CGE Model Changes

- Climate Change affects crop yields as per previous slide
- Cost of Irrigation estimated as an increase in capital requirement
- Physical Limit on Irrigation imposed

Irrigation can expand up to "severe water stress" threshold

Allow endogenous technology choice

Options are Adapt (and pay for it) vs. Don't Adapt

Rationale: estimate <u>cost</u> & <u>benefit</u> of adaptation then let model decide

Illustration of Adaptation Choice

No Climate Change – only one technology available

Input Costs	Output Value
Fertiliser €5 Irrigation €5 Other €5	
<u>Total Cost</u> <u>€15</u>	<u>Total Output</u> <u>€15</u>

Unit Cost = (€15 / € 15) = 1

Illustration of Adaptation Choice II

<u>With Climate Change</u> – model chooses Adaptation provided it is cost effective

In this illustration:

- Climate change increases unit cost
- But cost increase is lower with Adaptation technology
- Therefore chooses Adaptation

<u>Results – 2080 Climate, Comparative Static Analysis</u>

Adaptation can reduce damages substantially

But Attention must be paid to the costs & limits of adaptation options

Results – by region

Results Summary

When 2080 climate is imposed on today's economy...

- No Adaptation: Global GDP loss equivalent to around 0.2% of GDP.
 - >1% in India, Southern Europe, Asia, North Africa.
- "Free" adaptation gives global *gain* of 0.2% of GDP
 - but net result negative once cost & sustainability limits considered (-0.1% GDP)
- Results allow comparison of capital cost with and without adaptation
 - Adaptation sends \$10bn additional capital (net) to agriculture sector
 - \$0.5bn in sub-Saharan Africa, \$2bn in India, \$9bn in Rest of Asia (excl. China)
 - Some regions require <u>less</u> capital as adaptation shifts global production (China, Russia, Canada)

Limitations and next steps

- Costs and sustainability limits are speculative at this stage
- Analysis is comparative static need to switch to dynamic economic model
- Need to move to multiple sectors (not just agriculture) data requirements considerable

DRAFT INTERNAL PRESENTATION ONLY DO NOT CIRCULATE

15

Agriculture Data II Sustainability Conditions

Condition	Action	Effect on Crop Productivity
rainfall index >800	Irrigation – increase in the total amount of water to compensate potential yield reduction	Potential negative impacts are completely compensated
600 < rainfall index < 800 AND Irrigation infrastructure and technology already developed	Irrigation – increase in half of the amount of water to compensate potential yield reduction	Potential negative impacts are compensated by one half
Rainfall index < 600 OR irrigation and water management systems are already developed	Irrigation – no further increase in water for irrigation	Potential negative impacts are <u>not</u> <u>compensated</u>
Countries with low environmental protection standards	Fertiliser – increase in total N fertiliser application	Potential negative impacts are compensated by 50%
Countries with high environmental protection standards	Fertiliser – no increase in total N fertiliser application	Potential negative impacts are <u>not</u> <u>compensated</u>